• Så kollar du hur hårddisken mår i Linux.

    SMART (Self-Monitoring, Analysis and Reporting Technology) är en inbyggd funktion i hårddiskar och SSD-enheter som kontinuerligt övervakar deras hälsa. Genom att analysera parametrar som temperatur, driftstimmar och antal defekta sektorer kan SMART ge tidiga varningssignaler om en enhet håller på att gå sönder. I Linux kan man med hjälp av paketet smartmontools snabbt kontrollera diskens status, köra självtester och sätta upp automatiserad övervakning. Denna artikel förklarar tekniken bakom SMART och visar hur du i praktiken kan kontrollera hårddiskars och SSD:ers hälsa i olika Linux-distributioner.

    Vad är SMART?

    SMART står för Self-Monitoring, Analysis and Reporting Technology. Det är en standardiserad teknik som finns inbyggd i nästan alla hårddiskar (HDD) och SSD-enheter.

    Syftet är att övervaka diskens hälsa i realtid och varna innan fel leder till dataförlust. SMART gör detta genom att logga olika attribut (mätvärden) som visar hur disken mår.

    Exempel på viktiga attribut:

    • Reallocated Sector Count – Antal sektorer som markerats defekta och ersatts med reservsektorer. Ett ökande värde betyder att disken försämras.
    • Current Pending Sector Count – Antal sektorer som är osäkra och väntar på omallokering. En stark varningssignal.
    • Power-On Hours – Hur länge enheten har varit igång. Ger en bild av diskens ålder.
    • Temperature – Diskens arbetstemperatur. Hög temperatur förkortar livslängden.
    • Wear Leveling Count (SSD) – Mäter hur mycket av flashminnets livslängd som har förbrukats.

    SMART fungerar genom att disken själv registrerar dessa värden och rapporterar dem till operativsystemet via ATA/SATA eller NVMe-protokoll. Systemadministratören kan sedan läsa ut informationen med verktyg som smartctl.

    Praktisk guide: Kontrollera diskar med SMART i Linux

    1. Installera verktyget smartmontools

    Debian/Ubuntu

    sudo apt update
    sudo apt install smartmontools

    Red Hat / CentOS / Fedora

    sudo dnf install smartmontools

    (äldre system:)

    sudo yum install smartmontools

    Arch Linux / Manjaro

    sudo pacman -S smartmontools

    openSUSE

    sudo zypper install smartmontools

    2. Identifiera disken

    Lista anslutna enheter:

    lsblk

    eller

    sudo fdisk -l

    Notera diskens beteckning, t.ex. /dev/sda, /dev/sdb, eller /dev/nvme0n1.


    3. Kontrollera SMART-stöd och status

    Visa information om enheten

    sudo smartctl -i /dev/sdX

    Snabb hälsokontroll

    sudo smartctl -H /dev/sdX
    • PASSED → Disken rapporterar inga kritiska fel.
    • FAILED → Disken är defekt, byt ut den.

    4. Läs ut detaljerad SMART-data

    sudo smartctl -A /dev/sdX

    Här får du fram attribut som:

    • Antal driftstimmar
    • Temperatur
    • Omallokerade sektorer
    • Pending-sektorer
    • SSD-slitagevärden

    5. Kör SMART-självtester

    SMART kan själv testa diskens hälsa genom interna tester.

    Kort test (ca 2 minuter):

    sudo smartctl -t short /dev/sdX

    Se resultatet:

    sudo smartctl -l selftest /dev/sdX

    Långt test (kan ta flera timmar):

    sudo smartctl -t long /dev/sdX

    Se resultatet:

    sudo smartctl -l selftest /dev/sdX

    6. Tolkning av resultat

    • Reallocated_Sector_Ct > 0 → Dålig disk, byt ut så snart som möjligt.
    • Current_Pending_Sector > 0 → Risk för dataförlust, byt disk.
    • Temperature > 55°C → För hög, kontrollera kylning.
    • Power_On_Hours > 40.000 h → Disken är gammal, ökad risk för fel.
    • PASSED men med varningar → SMART kan missa vissa fel, gör alltid backup.

    7. Löpande övervakning med smartd

    För servrar kan du köra smartd, en bakgrundstjänst som övervakar alla diskar och skickar varningar.

    Aktivera tjänsten:

    sudo systemctl enable smartd
    sudo systemctl start smartd

    Konfiguration:

    /etc/smartd.conf

    Här kan du ange e-postadress för automatiska varningar.

    Slutsats

    SMART är en inbyggd teknik för självdiagnostik i hårddiskar och SSD\:er. Med hjälp av smartmontools i Linux kan administratörer:

    • Kontrollera diskars hälsa.
    • Köra självtester.
    • Upptäcka problem i tid.
    • Få automatiska varningar via smartd.

    Det är en viktig del i förebyggande underhåll. Men kom ihåg:
    👉 SMART ersätter aldrig regelbundna säkerhetskopior.

    Lite exempel

    För ut denna log när jag skriver : smartctl /dev/sdc

    IDSizeValueDescription
    0x000a22Device-to-host register FISes sent due to a COMRESET
    0x000120Command failed due to ICRC error
    0x000320R_ERR response for device-to-host data FIS
    0x000420R_ERR response for host-to-device data FIS
    0x000620R_ERR response for device-to-host non-data FIS
    0x000720R_ERR response for host-to-device non-data FIS

    SATA Phy Event Counters (GP Log 0x11)

    Dessa värden loggas av SATA-fysiklagret (den elektriska/kommunikationsdelen av protokollet).
    De visar olika felhändelser eller specialfall vid kommunikation mellan disk och värddator.

    IDValueBeskrivningFörklaring
    0x000a2Device-to-host register FISes sent due to a COMRESETDisken har skickat Register FIS (Frame Information Structure) till värden p.g.a. en COMRESET (en återställningssignal i SATA-länken). Två gånger har länken återställts.
    0x00010Command failed due to ICRC errorInga kommandon har misslyckats på grund av ICRC (Interface Cyclic Redundancy Check) fel. Ett ICRC-fel innebär korrupt data mellan värd och disk.
    0x00030R_ERR response for device-to-host data FISInga R_ERR (error responses) inträffade vid dataöverföring från enheten till värden.
    0x00040R_ERR response for host-to-device data FISInga felrapporter från värden till enheten när data skickades åt det hållet.
    0x00060R_ERR response for device-to-host non-data FISInga fel vid icke-dataöverföringar från disken (t.ex. kontroll/kommandoramar).
    0x00070R_ERR response for host-to-device non-data FISInga fel vid icke-dataöverföringar från värden till disken.

    Tolkningar

    • Värden på 0 = inga fel, vilket är bra.
    • 0x000a = 2 betyder att SATA-länken har återställts två gånger.
      Det behöver inte vara ett problem, men om värdet ökar ofta kan det tyda på:
    • Dåliga kablar eller kontakter
    • Strömproblem
    • Buggar i kontroller/drivrutiner
    SMART – teknisk faktaruta

    SMART (Self-Monitoring, Analysis and Reporting Technology) är inbyggd i HDD/SSD och övervakar hälsan via interna sensorer och räknare. Enheten lagrar attribut i firmware och rapporterar dem till värddatorn. Tester körs internt i disken och resultat loggas för felsökning.


    Terminologi (SMART-attribut & status)
    • ATTRIBUTE / ID – Namn och numeriskt ID för mätvärdet.
    • VALUE / WORST / THRESH – Normaliserade värden (ofta 100→0 eller 200→0). FAIL inträffar när VALUE ≤ THRESH enligt tillverkarens gräns.
    • RAW_VALUE – Rå räknare (t.ex. antal sektorer, fel, grader °C).
    • TYPEPre-fail (tidig varning) eller Old_age (slitage/ålder).
    • STATUS (smartctl -H)PASSED / FAILED – snabb sammanfattning.
    • TesttyperShort (snabb ytkontroll), Long/Extended (hela ytan), Conveyance (transportskador, främst HDD), Selective (delmängd).
    • LoggarSelf-test log, Error log (senaste I/O-fel med LBA).
    Vanliga indikatorer
    • Reallocated_Sector_Ct > 0 → reservsektorer har tagits i bruk (slitage/problem på medier).
    • Current_Pending_Sector > 0 → osäkra sektorer som väntar på omallokering (hög risk).
    • UDMA_CRC_Error_Count > 0 → ofta kabel/kontaktproblem (SATA).
    • Temperature > ~55 °C → kylproblem, förkortad livslängd.
    • SSD-specifiktWear_Leveling_Count/Media_Wearout (SATA), Percentage Used (NVMe).

    Kompatibilitet
    • HDD (SATA/PATA/SAS) – Ja, stöds brett via smartctl (SAS ofta med HBA-pass-through).
    • SSD (SATA) – Ja, SMART-attribut för slitage, omallokering, temperatur m.m.
    • NVMe-SSD – Ja, via NVMe SMART/Health-logg. smartctl och nvme-cli kan läsa dessa.
    • USB-kabinett/dockorBeror på brygga. Kräver SAT-pass-through; prova smartctl -d sat /dev/sdX. Vissa adaptrar exponerar inte SMART alls.
    • Virtualisering – kräver enhets-/controller-pass-through för tillförlitliga värden.
    Snabbkommandon (Linux)
    # Identifiera enhet
    lsblk    # t.ex. /dev/sda, /dev/sdb, /dev/nvme0n1
    
    # HDD/SSD (SATA)
    sudo smartctl -iH -A /dev/sdX       # info + hälsa + attribut
    sudo smartctl -t short  /dev/sdX    # kort test
    sudo smartctl -t long   /dev/sdX    # långt test
    sudo smartctl -l selftest /dev/sdX  # testlogg
    
    # NVMe-SSD
    sudo smartctl -a /dev/nvme0         # SMART/Health från controllern
    sudo nvme smart-log /dev/nvme0      # alternativ via nvme-cli
      
    Begränsningar och råd
    • SMART är statistiskt/heuristiskt – plötsliga fel kan ske utan förvarning. Ha alltid backup.
    • Tolkning varierar mellan tillverkare; jämför trender över tid snarare än enstaka värden.
    • Kombinera med yttester (t.ex. badblocks) vid osäkerhet.
  • GNOME 49: Bakom kulisserna i jakten på perfekt HDR-upplevelse

    17 september 2025 släpps GNOME 49 – versionen som sätter ljusstyrka och HDR-kontroll i fokus. Det är en uppgradering som ger användarna bättre kontroll, energieffektivitet och utökat stöd för flera skärmar.

    En förändring med många ansikten

    Tekniken bakom GNOME 49 bygger på idén om centraliserad och intelligent styrning av bakgrundsbelysning genom kompositorn Mutter. Förändringen är resultatet av ett års arbete lett av Red Hats Sebastian Wick. I sitt blogginlägg förklarar han ambitionen:

    ”En av sakerna jag arbetar med på Red Hat är HDR-stöd… De flesta externa HDR-skärmar vägrar låta användaren styra luminansen i sin skärmmeny (OSD) om skärmen är i HDR-läge… Av energibesparingsskäl vill vi kunna ändra den tillgängliga marginalen dynamiskt… Om det inte finns något HDR-innehåll på skärmen finns det ingen anledning att vrida upp bakgrundsbelysningen.”

    Flera problem – flera lösningar

    1. När skärmens meny inte räcker

    Många HDR-skärmar låser ljusstyrkeregleringen när HDR är aktiverat. GNOME löste detta redan i version 48 med en ”mjukvarubakgrundsbelysning” – en metod där signalens vita nivå höjs eller sänks för att simulera ändrad ljusstyrka utan att påverka den fysiska LED-belysningen. Med 10–12-bitars HDR-signaler fungerar tekniken utan märkbara nackdelar och kan dessutom minska energiförbrukningen.

    2. Sysfs-API är föråldrat och otillräckligt

    Det äldre sysfs-API:t för bakgrundsbelysning är begränsat till en intern panel, kräver root-behörighet eller D-Bus-anrop, och är svårt att mappa till rätt skärm. Sebastian Wick beslutade att ersätta det med ett helt nytt Kernel Mode Setting (KMS) backlight-API – byggt för att stödja flera skärmar, flera bakgrundsbelysningar per skärm och styrning via användargränssnitt, energisparfunktioner och ljussensorer.

    Mutter kopplar ihop allt

    I GNOME 49 flyttas hela bakgrundsbelysningshanteringen in i Mutter. Tidigare delades ansvaret mellan gnome-settings-daemon och GNOME Shell via D-Bus, men nu är Mutter enda källan till sanningen.

    Förändringen innebär att:

    • Snabbinställningar visar individuella ljusstyrkeregler för varje skärm.
    • Det tidigare reglaget HDR-ljusstyrka i inställningarna har tagits bort.

    När det nya KMS-API:t väl integreras i Linuxkärnan kan GNOME omedelbart börja finjustera HDR-marginalen i realtid – vilket minskar energislöseri och förbättrar bildkvaliteten.

    Vad händer mer i Mutter 49?

    Förutom den stora omarbetningen av ljusstyrkan får Mutter förbättrad färghantering med stöd för ICC-profiler under Wayland. Det ger mer exakt färgåtergivning på kompatibla skärmar. Dessutom införs stöd för full RGB-utmatning (Broadcast RGB) och en uppdaterad Wayland seat-protokoll (wl_seat v10) med bättre hantering av tangentbordsupprepning och styrspaksfunktioner.

    Teknik och användarreaktioner

    En Linuxanvändare kommenterade på ett forum:

    ”Om jag förstår artikeln rätt, så hanterar det vanliga ljusstyrkereg­laget nu även skärmar som inte exponerar någon bakgrundsbelysningskontroll.”

    Det visar att även de enklaste funktionerna – som ljusstyrkeslidern – har blivit mer robusta och anpassningsbara vid HDR-användning.

    Slutsats – en ny era för ljusstyrka i GNOME

    GNOME 49 markerar en stor teknisk omställning:

    1. Enhetlig styrning via Mutter – konsekvent kontroll oavsett antal skärmar.
    2. Dynamisk HDR-marginal – optimerad ljusstyrka beroende på innehåll.
    3. Förbättrad färghantering – exaktare färger tack vare ICC-profiler under Wayland.
    4. Bättre användarupplevelse – från kraftfulla API-förändringar till enklare, mer logiska reglage.

    GNOME 49 är därmed mer än en uppdatering – det är ett steg mot en smartare, energisnålare och mer visuellt konsekvent skrivbordsmiljö.

    
    FAKTARUTA: GNOME
    
    HISTORIA
    - GNOME står för "GNU Network Object Model Environment".
    - Startat 1997 av Miguel de Icaza och Federico Mena Quintero.
    - Målet var att skapa en helt fri skrivbordsmiljö utan proprietära komponenter, som alternativ till KDE (som då använde Qt med icke-fri licens).
    - Version 1.0 släpptes 3 mars 1999.
    - GNOME 2 (2002–2010) byggde på GTK 2 och introducerade ett mer polerat, klassiskt gränssnitt.
    - GNOME 3 (2011) införde GNOME Shell och ett mer aktivitetsbaserat gränssnitt.
    - GNOME 40 (2021) markerade en stor designförändring med horisontell arbetsytehantering.
    - Senaste stabila version (aug 2025): GNOME 48. GNOME 49 släpps 17 september 2025.
    
    FUNKTIONER
    - Skrivbordsmiljö för Unix-liknande system (Linux, BSD m.fl.).
    - Använder GTK (GIMP Toolkit) för grafiska gränssnitt.
    - Standardappar inkluderar Files (Nautilus), Terminal, Web (Epiphany), Settings, Calendar, Contacts, Music, Videos, Maps m.fl.
    - Integrerat programcenter via GNOME Software.
    - Stöd för både Wayland och X11 (Wayland är standard).
    - Tilläggssystem via GNOME Extensions.
    
    TEKNIK
    - Skriven huvudsakligen i C med GObject-ramverket.
    - Fönsterhantering via Mutter.
    - Inställningar lagras i dconf/gsettings.
    - Integration med systemd, PipeWire, BlueZ, NetworkManager och Avahi.
    - Multimedia via GStreamer.
    - Förberett stöd för nytt KMS backlight-API.
    
    GEMENSKAP OCH ORGANISATION
    - Drivs av GNOME Foundation.
    - Global gemenskap med utvecklare, designers, översättare och dokumentationsförfattare.
    - Finansieras genom donationer, sponsring och bidrag från företag som Red Hat, Canonical, SUSE och Endless OS.
    - Standardmiljö i Fedora Workstation, Ubuntu, Debian och openSUSE.
    
    FRAMTID OCH GNOME 49
    - Omarbetad HDR- och ljusstyrningshantering i Mutter.
    - Stöd för flera skärmar med individuella ljusstyrkeregler.
    - Förbättrad färghantering med ICC-profiler i Wayland.
    - Optimerad energiförbrukning via dynamisk HDR-headroom.
    - Förberedelser för integration med nytt KMS backlight-API.
    
    MER INFORMATION
    - Webbplats: gnome.org
    - Källkod: gitlab.gnome.org
    - Dokumentation: help.gnome.org
    
    
  • NetworkManager 1.54

    NetworkManager 1.54 introducerar IPv4-vidarebefordran per enhet och förbättrat stöd för WireGuard, OVS och initrd

    Efter fem månaders utveckling är version 1.54 av NetworkManager nu släppt – ett verktyg och systemtjänst för att hantera nätverksanslutningar i Linux. Den nya versionen bjuder på en rad förbättringar som ger ökad flexibilitet och bättre kontroll över nätverksinställningarna.

    IPv4-vidarebefordran per enhet

    En av de mest efterlängtade nyheterna är möjligheten att aktivera IPv4-vidarebefordran separat för varje enskilt nätverksgränssnitt. Tidigare har detta varit en global inställning, men med den nya egenskapen ipv4.forwarding kan man nu styra detta per enhet. Det gör det enklare att bygga komplexa nätverk där vissa gränssnitt agerar som routrar medan andra inte gör det.

    Förfinad hantering av IPv6-prefix

    Version 1.54 introducerar också förbättrat stöd för IPv6-prefixdelegering. En ny inställning, prefix-delegation, tillsammans med subnet-id, gör det möjligt att bestämma vilket delnät som ska användas på nedströmsgränssnitt vid delegering av IPv6-adresser.

    Förbättrat stöd för baremetal-miljöer

    Uppdateringar i nm-cloud-setup gör att NetworkManager nu fungerar bättre i baremetal-installationer baserade på OCI (Oracle Cloud Infrastructure). Det ger säkrare och mer förutsägbara nätverkskonfigurationer i dessa miljöer.

    Smidigare användning av WireGuard

    För användare av VPN-protokollet WireGuard har hanteringen av IPv6-endpunkter förbättrats. NetworkManager skapar nu automatiskt brandväggsregler som förhindrar att Linux-kärnan felaktigt släpper trafik på grund av reverse path filtering.

    Ny funktionalitet i terminalgränssnitt och OVS

    Textgränssnittet nmtui har fått stöd för att konfigurera loopback-enheten, något som tidigare inte varit möjligt. Samtidigt har stödet för Open vSwitch förbättrats: de flesta OVS-inställningar kan nu ändras utan att anslutningen måste kopplas ned först.

    Större kontroll över SR-IOV-parametrar

    En ny egenskap, sriov.preserve-on-down, ger användaren möjlighet att styra om SR-IOV-konfigurationer ska bevaras eller återställas vid nedkoppling. Detta är särskilt användbart i virtualiseringsmiljöer där konsekvent beteende är viktigt.

    Bättre detektering av länkstatus i OVS DPDK

    För de som använder OVS med DPDK-stöd finns en ny inställning kallad ovs-dpdk.lsc-interrupt, som ger mer tillförlitlig upptäckt av förändringar i länkstatus. Detta förbättrar stabilitet och prestanda i miljöer med höga krav.

    Initrd-förbättringar för nätverksuppstart

    Under uppstart har NetworkManagers initrd-generator nu stöd för att läsa NVMe Boot Firmware Table (BFT), vilket förenklar automatisering av nätverksinställningar i ett tidigt skede. Nya systemd-tjänster har också lagts till för att förbättra nätverksfunktionaliteten redan innan operativsystemet är fullt igång.

    Tillgänglighet

    Källkoden till NetworkManager 1.54 finns att ladda ner via projektets GitLab-sida. En komplett lista över förändringar finns i den officiella ändringsloggen.

    NetworkManager – översikt

    NetworkManager hanterar nätverksanslutningar i Linux automatiskt. Det kopplar upp din dator till rätt nätverk, tilldelar IP-adresser, konfigurerar DNS, routing, VPN och brandvägg – utan att du behöver göra det manuellt.

    Projektstart: 2004 av Red Hat
    Syfte: Förenkla och automatisera nätverkskonfiguration
    Stödjer: Ethernet, Wi-Fi, VPN, mobilnät, OVS, moln
    Verktyg: nmcli (terminal), nmtui (text), nm-connection-editor (GUI)
    Arkitektur: Bakgrundstjänst, libnm-bibliotek, pluginbaserad
    Fördelar: Profiler, dynamisk routing, initrd-stöd, molnintegration
    Licens: GPLv2
    Källkod: gitlab.freedesktop.org

Etikett: red hat

  • Så kollar du hur hårddisken mår i Linux.

    SMART (Self-Monitoring, Analysis and Reporting Technology) är en inbyggd funktion i hårddiskar och SSD-enheter som kontinuerligt övervakar deras hälsa. Genom att analysera parametrar som temperatur, driftstimmar och antal defekta sektorer kan SMART ge tidiga varningssignaler om en enhet håller på att gå sönder. I Linux kan man med hjälp av paketet smartmontools snabbt kontrollera diskens…

  • GNOME 49: Bakom kulisserna i jakten på perfekt HDR-upplevelse

    17 september 2025 släpps GNOME 49 – versionen som sätter ljusstyrka och HDR-kontroll i fokus. Det är en uppgradering som ger användarna bättre kontroll, energieffektivitet och utökat stöd för flera skärmar. En förändring med många ansikten Tekniken bakom GNOME 49 bygger på idén om centraliserad och intelligent styrning av bakgrundsbelysning genom kompositorn Mutter. Förändringen är…

  • NetworkManager 1.54

    NetworkManager 1.54 introducerar IPv4-vidarebefordran per enhet och förbättrat stöd för WireGuard, OVS och initrd Efter fem månaders utveckling är version 1.54 av NetworkManager nu släppt – ett verktyg och systemtjänst för att hantera nätverksanslutningar i Linux. Den nya versionen bjuder på en rad förbättringar som ger ökad flexibilitet och bättre kontroll över nätverksinställningarna. IPv4-vidarebefordran per…