• Så kollar du hur hårddisken mår i Linux.

    SMART (Self-Monitoring, Analysis and Reporting Technology) är en inbyggd funktion i hårddiskar och SSD-enheter som kontinuerligt övervakar deras hälsa. Genom att analysera parametrar som temperatur, driftstimmar och antal defekta sektorer kan SMART ge tidiga varningssignaler om en enhet håller på att gå sönder. I Linux kan man med hjälp av paketet smartmontools snabbt kontrollera diskens status, köra självtester och sätta upp automatiserad övervakning. Denna artikel förklarar tekniken bakom SMART och visar hur du i praktiken kan kontrollera hårddiskars och SSD:ers hälsa i olika Linux-distributioner.

    Vad är SMART?

    SMART står för Self-Monitoring, Analysis and Reporting Technology. Det är en standardiserad teknik som finns inbyggd i nästan alla hårddiskar (HDD) och SSD-enheter.

    Syftet är att övervaka diskens hälsa i realtid och varna innan fel leder till dataförlust. SMART gör detta genom att logga olika attribut (mätvärden) som visar hur disken mår.

    Exempel på viktiga attribut:

    • Reallocated Sector Count – Antal sektorer som markerats defekta och ersatts med reservsektorer. Ett ökande värde betyder att disken försämras.
    • Current Pending Sector Count – Antal sektorer som är osäkra och väntar på omallokering. En stark varningssignal.
    • Power-On Hours – Hur länge enheten har varit igång. Ger en bild av diskens ålder.
    • Temperature – Diskens arbetstemperatur. Hög temperatur förkortar livslängden.
    • Wear Leveling Count (SSD) – Mäter hur mycket av flashminnets livslängd som har förbrukats.

    SMART fungerar genom att disken själv registrerar dessa värden och rapporterar dem till operativsystemet via ATA/SATA eller NVMe-protokoll. Systemadministratören kan sedan läsa ut informationen med verktyg som smartctl.

    Praktisk guide: Kontrollera diskar med SMART i Linux

    1. Installera verktyget smartmontools

    Debian/Ubuntu

    sudo apt update
    sudo apt install smartmontools

    Red Hat / CentOS / Fedora

    sudo dnf install smartmontools

    (äldre system:)

    sudo yum install smartmontools

    Arch Linux / Manjaro

    sudo pacman -S smartmontools

    openSUSE

    sudo zypper install smartmontools

    2. Identifiera disken

    Lista anslutna enheter:

    lsblk

    eller

    sudo fdisk -l

    Notera diskens beteckning, t.ex. /dev/sda, /dev/sdb, eller /dev/nvme0n1.


    3. Kontrollera SMART-stöd och status

    Visa information om enheten

    sudo smartctl -i /dev/sdX

    Snabb hälsokontroll

    sudo smartctl -H /dev/sdX
    • PASSED → Disken rapporterar inga kritiska fel.
    • FAILED → Disken är defekt, byt ut den.

    4. Läs ut detaljerad SMART-data

    sudo smartctl -A /dev/sdX

    Här får du fram attribut som:

    • Antal driftstimmar
    • Temperatur
    • Omallokerade sektorer
    • Pending-sektorer
    • SSD-slitagevärden

    5. Kör SMART-självtester

    SMART kan själv testa diskens hälsa genom interna tester.

    Kort test (ca 2 minuter):

    sudo smartctl -t short /dev/sdX

    Se resultatet:

    sudo smartctl -l selftest /dev/sdX

    Långt test (kan ta flera timmar):

    sudo smartctl -t long /dev/sdX

    Se resultatet:

    sudo smartctl -l selftest /dev/sdX

    6. Tolkning av resultat

    • Reallocated_Sector_Ct > 0 → Dålig disk, byt ut så snart som möjligt.
    • Current_Pending_Sector > 0 → Risk för dataförlust, byt disk.
    • Temperature > 55°C → För hög, kontrollera kylning.
    • Power_On_Hours > 40.000 h → Disken är gammal, ökad risk för fel.
    • PASSED men med varningar → SMART kan missa vissa fel, gör alltid backup.

    7. Löpande övervakning med smartd

    För servrar kan du köra smartd, en bakgrundstjänst som övervakar alla diskar och skickar varningar.

    Aktivera tjänsten:

    sudo systemctl enable smartd
    sudo systemctl start smartd

    Konfiguration:

    /etc/smartd.conf

    Här kan du ange e-postadress för automatiska varningar.

    Slutsats

    SMART är en inbyggd teknik för självdiagnostik i hårddiskar och SSD\:er. Med hjälp av smartmontools i Linux kan administratörer:

    • Kontrollera diskars hälsa.
    • Köra självtester.
    • Upptäcka problem i tid.
    • Få automatiska varningar via smartd.

    Det är en viktig del i förebyggande underhåll. Men kom ihåg:
    👉 SMART ersätter aldrig regelbundna säkerhetskopior.

    Lite exempel

    För ut denna log när jag skriver : smartctl /dev/sdc

    IDSizeValueDescription
    0x000a22Device-to-host register FISes sent due to a COMRESET
    0x000120Command failed due to ICRC error
    0x000320R_ERR response for device-to-host data FIS
    0x000420R_ERR response for host-to-device data FIS
    0x000620R_ERR response for device-to-host non-data FIS
    0x000720R_ERR response for host-to-device non-data FIS

    SATA Phy Event Counters (GP Log 0x11)

    Dessa värden loggas av SATA-fysiklagret (den elektriska/kommunikationsdelen av protokollet).
    De visar olika felhändelser eller specialfall vid kommunikation mellan disk och värddator.

    IDValueBeskrivningFörklaring
    0x000a2Device-to-host register FISes sent due to a COMRESETDisken har skickat Register FIS (Frame Information Structure) till värden p.g.a. en COMRESET (en återställningssignal i SATA-länken). Två gånger har länken återställts.
    0x00010Command failed due to ICRC errorInga kommandon har misslyckats på grund av ICRC (Interface Cyclic Redundancy Check) fel. Ett ICRC-fel innebär korrupt data mellan värd och disk.
    0x00030R_ERR response for device-to-host data FISInga R_ERR (error responses) inträffade vid dataöverföring från enheten till värden.
    0x00040R_ERR response for host-to-device data FISInga felrapporter från värden till enheten när data skickades åt det hållet.
    0x00060R_ERR response for device-to-host non-data FISInga fel vid icke-dataöverföringar från disken (t.ex. kontroll/kommandoramar).
    0x00070R_ERR response for host-to-device non-data FISInga fel vid icke-dataöverföringar från värden till disken.

    Tolkningar

    • Värden på 0 = inga fel, vilket är bra.
    • 0x000a = 2 betyder att SATA-länken har återställts två gånger.
      Det behöver inte vara ett problem, men om värdet ökar ofta kan det tyda på:
    • Dåliga kablar eller kontakter
    • Strömproblem
    • Buggar i kontroller/drivrutiner
    SMART – teknisk faktaruta

    SMART (Self-Monitoring, Analysis and Reporting Technology) är inbyggd i HDD/SSD och övervakar hälsan via interna sensorer och räknare. Enheten lagrar attribut i firmware och rapporterar dem till värddatorn. Tester körs internt i disken och resultat loggas för felsökning.


    Terminologi (SMART-attribut & status)
    • ATTRIBUTE / ID – Namn och numeriskt ID för mätvärdet.
    • VALUE / WORST / THRESH – Normaliserade värden (ofta 100→0 eller 200→0). FAIL inträffar när VALUE ≤ THRESH enligt tillverkarens gräns.
    • RAW_VALUE – Rå räknare (t.ex. antal sektorer, fel, grader °C).
    • TYPEPre-fail (tidig varning) eller Old_age (slitage/ålder).
    • STATUS (smartctl -H)PASSED / FAILED – snabb sammanfattning.
    • TesttyperShort (snabb ytkontroll), Long/Extended (hela ytan), Conveyance (transportskador, främst HDD), Selective (delmängd).
    • LoggarSelf-test log, Error log (senaste I/O-fel med LBA).
    Vanliga indikatorer
    • Reallocated_Sector_Ct > 0 → reservsektorer har tagits i bruk (slitage/problem på medier).
    • Current_Pending_Sector > 0 → osäkra sektorer som väntar på omallokering (hög risk).
    • UDMA_CRC_Error_Count > 0 → ofta kabel/kontaktproblem (SATA).
    • Temperature > ~55 °C → kylproblem, förkortad livslängd.
    • SSD-specifiktWear_Leveling_Count/Media_Wearout (SATA), Percentage Used (NVMe).

    Kompatibilitet
    • HDD (SATA/PATA/SAS) – Ja, stöds brett via smartctl (SAS ofta med HBA-pass-through).
    • SSD (SATA) – Ja, SMART-attribut för slitage, omallokering, temperatur m.m.
    • NVMe-SSD – Ja, via NVMe SMART/Health-logg. smartctl och nvme-cli kan läsa dessa.
    • USB-kabinett/dockorBeror på brygga. Kräver SAT-pass-through; prova smartctl -d sat /dev/sdX. Vissa adaptrar exponerar inte SMART alls.
    • Virtualisering – kräver enhets-/controller-pass-through för tillförlitliga värden.
    Snabbkommandon (Linux)
    # Identifiera enhet
    lsblk    # t.ex. /dev/sda, /dev/sdb, /dev/nvme0n1
    
    # HDD/SSD (SATA)
    sudo smartctl -iH -A /dev/sdX       # info + hälsa + attribut
    sudo smartctl -t short  /dev/sdX    # kort test
    sudo smartctl -t long   /dev/sdX    # långt test
    sudo smartctl -l selftest /dev/sdX  # testlogg
    
    # NVMe-SSD
    sudo smartctl -a /dev/nvme0         # SMART/Health från controllern
    sudo nvme smart-log /dev/nvme0      # alternativ via nvme-cli
      
    Begränsningar och råd
    • SMART är statistiskt/heuristiskt – plötsliga fel kan ske utan förvarning. Ha alltid backup.
    • Tolkning varierar mellan tillverkare; jämför trender över tid snarare än enstaka värden.
    • Kombinera med yttester (t.ex. badblocks) vid osäkerhet.
  • Första intrycket av Debian 13.0 – från VMware till äldre hårdvara

    Debian är känt som en stabil och flexibel Linux-distribution, ofta använd som grund för andra populära system som Ubuntu. Med version 13.0 är det tydligt att utvecklarna fortsätter att balansera på den svåra linjen mellan kraftfullt och lättillgängligt. Jag har testat den både i en virtuell miljö på toppmodern hårdvara och på en äldre laptop – två scenarier som ger helt olika perspektiv.

    Installation och första upplevelser

    För det första testet valde jag Debian 13 Netinstall, en ISO-fil på cirka 700 MB. Den är smidig att ladda ner, men kräver att det mesta av systemet hämtas via internet under installationen. För den som har begränsad uppkoppling, särskilt på landsbygden där 5G fortfarande är en dröm, är det bättre att välja en komplett ISO med fler paket inkluderade från början.

    Installationen i VMware gick snabbt och problemfritt. På min Intel i9 med 32 GB RAM var hela processen avklarad på några minuter. Det är dock viktigt att komma ihåg att detta inte säger mycket om hur systemet känns på äldre datorer – här får VMware ett oförtjänt försprång genom att buffra resurser.

    Skrivbordsmiljöer: från Gnome till KDE Plasma

    Debian erbjuder flera skrivbordsmiljöer direkt vid installationen. Jag började med Gnome, men fann snabbt att Debians standardkonfiguration inte passade mina vanor. I Ubuntu är jag van vid att aktivitetsfältet ligger till vänster, medan Debian placerar det högst upp på skärmen. Resultatet? Mer musrörelser och mindre effektivitet.

    Lösningen blev att byta till KDE Plasma. Med sitt mer traditionella upplägg – menyn längst ner till vänster – kändes det som hemma, kanske på grund av mina år av Windows-användning. Plasma i Debian är både responsivt och anpassningsbart, vilket gör det lätt att forma miljön efter sina behov.

    Prestanda i VM

    Trots att den virtuella maskinen bara fick 2 GB RAM och 2 processorkärnor var prestandan överraskande bra. Att surfa i Firefox, redigera bilder i GIMP 3 och skriva i LibreOffice gick utan problem. Först vid mer resurskrävande uppgifter, som att streama SVT Play, märktes en viss tröghet.

    Test på äldre hårdvara

    För att få en mer rättvis bild installerade jag Debian 13 på en HP-laptop med första generationens Intel i7, 4 GB RAM och mekanisk hårddisk – BIOS daterat 2011. Installationen tog betydligt längre tid än i VM, drygt en timme, men gick i övrigt smidigt.

    Jag valde att installera alla tillgängliga fönsterhanterare för att kunna jämföra. Här stötte jag dock på en bugg: att byta mellan dem fungerade inte alltid som det skulle. Genom att växla till konsolläge och skapa en ny användare löste jag problemet.

    Plasma på Wayland vs. XFCE

    Första valet blev Plasma på Wayland, men prestandan var medioker – gränssnittet kändes segt och tungt. När jag istället loggade in med XFCE förändrades upplevelsen totalt. Systemet drog då endast runt 2 GB RAM och klarade att streama SVT utan märkbara fördröjningar. Även KDE fungerade, men hade längre laddningstider.

    Detta är en av Debians styrkor: möjligheten att själv välja skrivbordsmiljö och anpassa systemet efter hårdvaran. På äldre datorer är XFCE en klar vinnare.

    Hårddiskens betydelse

    Den mekaniska hårddisken var den största flaskhalsen i testet. För den som vill återbruka äldre datorer är det nästan alltid värt att byta till SSD – skillnaden i hastighet är dramatisk, särskilt vid start och programladdning.

    Slutsats

    Debian 13.0 är en imponerande uppdatering. Distributionen har blivit betydligt mer användarvänlig än förr, utan att tappa sin flexibilitet eller tekniska styrka. På modern hårdvara är den blixtsnabb, och med rätt skrivbordsmiljö fungerar den även utmärkt på äldre datorer.

    För nybörjare kan installationen av Netinstall-varianten kännas teknisk, men den som ger Debian en chans får ett system som kan skräddarsys från minimalistiskt till fullspäckat – och som är redo att tjäna i många år framöver.

Etikett: SSD

  • Så kollar du hur hårddisken mår i Linux.

    SMART (Self-Monitoring, Analysis and Reporting Technology) är en inbyggd funktion i hårddiskar och SSD-enheter som kontinuerligt övervakar deras hälsa. Genom att analysera parametrar som temperatur, driftstimmar och antal defekta sektorer kan SMART ge tidiga varningssignaler om en enhet håller på att gå sönder. I Linux kan man med hjälp av paketet smartmontools snabbt kontrollera diskens…

  • Första intrycket av Debian 13.0 – från VMware till äldre hårdvara

    Debian är känt som en stabil och flexibel Linux-distribution, ofta använd som grund för andra populära system som Ubuntu. Med version 13.0 är det tydligt att utvecklarna fortsätter att balansera på den svåra linjen mellan kraftfullt och lättillgängligt. Jag har testat den både i en virtuell miljö på toppmodern hårdvara och på en äldre laptop…